
Manual for hierarchicalBoosting package

Marc Pybus, Pierre Luisi, Giovanni Dall’Olio, Manu Uzkudun,
Hafid Laayouni, Jaume Bertranpetit and Johannes Engelken ∗

May 5, 2015

This manual explains how to use the ’Hierarchical Boosting’ method described in the manuscript
entitled“A Machine-Learning Framework to Detect and Classify Hard Selective Sweeps in Human
Populations”. Check http://hsb.upf.edu/ for more information on citation.

1 Principle

The basic idea of the framework provided in this package is described in detail in the manuscript
mentioned above, please read it before using it. The manuscript describes a framework to analyze
and classify positive selection in genomic regions using polymorphism data. The novelty of
the approach lies in the way the selection analysis is performed. Instead of addressing the
inference of positive selection as a binary outcome (selection vs. non-selection), it assumes that
there are different selective scenarios for which different selection tests show different power to
detect. Under this assumption, it is possible to use this disparity in sensitivity towards different
selection regimes to classify hypothetical selective sweeps into further properties, such as sweep
age, completeness or intensity.

Our package is based on a machine-learning classification algorithm called boosting (from
the mboost package - Buehmann and Hothorn 2007). Boosting is a supervised algorithm that
estimates linear regressions (we call it boosting functions) of input variables (summary statistics
of selection tests) to maximize the differences between two competing scenarios (e.g. complete
vs. incomplete selective sweeps). Our method sequentially applies different boosting functions
(as used by Lin et al. 2011) into a hierarchical classification scheme to optimally classify genomic
regions into different selection regimes. The framework implemented here relies on the results of
several selection test that need to be previously computed on simulated and empirical data. We
do not provide the software needed to estimate selection tests or run the simulations.

New methods to detect selection are published every year improving the capabilities of previ-
ous ones or expanding the range of selection scenarios detected (hard and soft sweeps or balancing
selection). We advise to use as many different selection tests as possible in the algorithm training
process. High correlation (e.g. r2 > 0.8) between summary statistics or selection tests should be
avoided since it will prevent coefficient convergence of the implemented boosting algorithm (as
explained in the manuscript).

During the training process, the algorithm is fed with a table containing selection tests scores
or summary statistics (as columns) for the different selection scenarios to be classified (as rows).
The more replicates are used in the training proces, the better. Table 1 shows an example of
such input table. Note that an even number of replicates for the two competing scenarios is not
required as explained in the manuscript.

∗Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Spain. Contact:

1

http://hsb.upf.edu/

scenario CLR iHS FayWuH TajimasD FuLiD XPEHH
neutral 0.2789 0.4424 -15.6810 -0.5916 0.6760 0.6449
neutral 0.7685 0.5439 2.2182 -0.2074 0.6502 -0.7827

...
ancient complete 3.3130 1.1149 0.4764 2.23085 -3.5784 3.1230
ancient complete 11.2205 1.6295 1.3220 -2.4338 -3.8018 4.0536

...
recent incomplete 0.4207 1.8648 -21.6999 -1.7474 -0.44682 6.0771
recent incomplete 0.5756 1.3418 -24.5180 -1.5016 -0.05735 8.3427

Table 1. Training table example.

2 Usage

Several steps need to be followed to properly use this package. This is a brief description of the
typical selection detection and classification procedure:

1. Decide which selection tests to use: depending on the type and properties of the data to
analyze, different selection test should be used. Some tests allow the use of missing data,
others need complete genotyping data. Some test may show sensitivity to many types of
selection while others only to very specific ones. You should think which type of selection
you are trying to detect (or discard) and choose your selection tests accordingly.

2. Run simulations for the training process: simulations should be as similar as possible to
the empirical dataset you want to analyze. You should use state-of-the-art simulation
software allowing for complex demographic and genomic models. Simulators should recre-
ate different selective regimes (positive, negative, balancing selection) at different time-
frames and populations. We recommend using one of the following simulation packages:
SFS CODE (Hernandez 2008), SLiM (Messer 2013), msms (Ewing and Hermisson 2010) or
cosi (Schaffner et al. 2005). Simulated data should mimic real genomic regions and match
sample sizes and possible site frequency spectrum bias of your reference dataset. Specific
recombination maps for the analyzed genomic regions should also be considered.

3. Apply your selection tests to the simulated and empirical data: selection tests usually come
in different flavors: some are SNP-based, others are window-based, some contain several
internal parameters that need to be tuned according to your data, others are applied as
provided. Nonetheless, at the end you want to obtain a unique score per test and per
region so they can be properly combined in a linear regression. We advice to use some
sort of summary statistics (mean, maximum, minimum) to unify your input variables in a
given genomic region (empirical or simulated). In the manuscript we describe an example
of strategy to choose the most sensitive summary statistics.

4. Define the classification tree in which data will be sequentially classified: you need to
envision which classification structure will provide the best results. You can also try several
configurations and pick the best performing one. One good strategy is to first distinguish
neutral from selection scenarios, and in the following steps, classify the selection scenarios
according to common features, such as age, sweep completeness or intensity. The power of
your selection tests towards specific selective scenario should guide you on the structure of

marc.pybus@upf.edu / jaume.bertranpetit@upf.edu

2

the classification tree. Remember that each node is a specifically trained boosting algorithm
that maximizes different between two competing scenarios (Figure 1). While developing the
method we realized that final allele frequency (Faf) of the allele under selection was driving
the signal in almost all the selection tests implemented, as explained in the manuscript.
Thus, we decided to first distinguish complete selective sweeps (Faf=1.0) compared to
incomplete and neutral scenarios, which were classified afterward. This strategy proved to
be better than discarding neutrality as the first step.

Figure 1. hierarchicalBoosting classification tree structure (from the manuscript).

5. Generate validation plots and interpret them: we have implemented a function that gen-
erates three validation plots for each trained boosting function. First validation plot is
coefficient convergence plot (Figure 2). Here you must check that coefficients for your
input variables reach convergence within the boosting iterative process and that the esti-
mated coefficients are similar across bootstraps. Lack of convergence may appear due to
high correlation between input variables or low number of boosting iterations. Correct this
when convergence is not reached with the default parameters. A second validation plot
is standardized coefficient plot (Figure 3). This plot shows the standardized coefficients
for each boosting function, which can give you an insight about the importance of each
selection test to uncover a specific selection scenario. The amplitude of the boxplot reflects
the robustness of the estimated boosting function (generated by the boostrapping process).
To reduce variance in the coefficient estimation you can increase the number of replicates
for each scenario or increase the number of bootstraps. And finally, the third validation
plot informs about the distribution of your boosting scores in scenario A and scenario B,
along with the significance threshold used (Figure 4). In this plot one can check how good
is the estimated boosting function in distiguishing between the two competing scenarios,
as well as which significance thresholds are more appropiate for a given boosting function.

6. Evaluate performance of the trained hierarchicalBoosting tree: once you have your boosting
functions trained, validated and embedded in the classification tree (we call it a hierarchicalBoosting

3

Figure 4. Coefficient convergence plot for the boosting function #1 from the example.

object), you should evaluate it before applying it to real data. Generate several indepen-
dent evaluation simulations (with the scenarios to be classified or possible false positives)
and apply the trained hierarchicalBoosting object to evaluate its classification power.

7. Apply the trained hierarchicalBoosting tree to your empirical data: the final step is to scan
real data to detect and classify selection signals using your trained hierarchicalBoosting
object. The simulations used to train the method should be as similar as possible to the
empirical dataset. Any know bias should be specifically simulated.

3 Example

A full example is shown below. In this example the training data comes from the original
manuscript (although it is not the exact same dataset). The data consists in 5 different selec-
tion scenarios generated using the cosi package (Schaffner et al. 2005). For each scenario 100
replicates are used. The simulated data mimics some population genetics features shown by the
CEU population from The 1000 Genomes Project - Phase I dataset (The 1000 Genomes Project
Consortium 2012). The selection scenarios simulated are: neutral, recent incomplete selection,
recent complete selection, ancient incomplete selection and ancient complete selection. Complete
and incomplete scenarios refer to the frequency of the allele under selection at the time of sam-
pling: incomplete refers to selective sweeps with a final allele frequency of 0.8 (s = 0.0147),

4

Figure 4. Standardized coefficient plot for the boosting function #1 from the example.

and complete specify selective sweeps that already reached fixation (s = 0.0257). Recent and
ancient scenarios indicate when those selective sweeps happened, being recent a sweep ending
at the moment of sampling, and ancient a sweep that ended 30,000 years ago (generation time
= 25 years).

The selection tests used here are the following: CLR (Nielsen et al. 2005), iHS (Voight et
al. 2006), Fay & Wu’s H (Fay and Wu 2000), Tajima’s D (Tajima 1989), Fu & Li’s D (Fu and
Li 1993), and XPEHH (Sabeti et al. 2002). Those tests were run under test-specific internal
parameters (window size, MAF filtering,...) and then summarized in a common window size
(using minimum or maximum, or mean) as described in detail in the manuscript. A window size
of 25 Kbp was used to unify the selection tests.

The obtained data (selection tests scores for the simulated selection scenarios) was merged
into a table that can be found in ”exdata” directory in the package. This table is used as training
dataset for the train.hierarchicalBoosting function.

A similar table containing selection tests scores for a real genomic region around the gene
SLC45A2 (known to be under selection in CEU population) can be found in the same folder. We
use this dataset as an example of empirical genomic region to be analyzed with the apply.hierarchicalBoosting
function once the training step is finished. This dataset was generated by applying the same se-
lection tests and the same summarizing approach used to create the training dataset.

A configuration table containing the parameters to apply the hierarchicalBoosting algorithm
must be created (Table 2). It describes the relation between the inputs and outputs of each
boosting function (Figure 1), the competing scenarios used, and the significance thresholds needed

5

input data scenario A scenario B threshold A threshold B

boosting 1 original recent complete,
ancient complete

neutral,recent incomplete,
ancient incomplete

FALSE 0.01

boosting 2 boosting 1:scenario B neutral recent incomplete,
ancient incomplete

0.99 FALSE

boosting 3 boosting 1:scenario A recent complete ancient complete 0.95 0.05

boosting 4 boosting 2:scenario B recent incomplete ancient incomplete 0.95 0.05

Table 2. Configuration table for hierarchicalBoosting.

to classify the different selection scenarios. Thus, to run a given boosting function one must define
the following parameters:

1. input data: the first boosting function must use as input dataset the original training table.
This way, the following boosting functions can use the outputs from boosting #1 (refered
as scenario A and scenario B) to further classify the data. When two thresholds are given
to a boosting function a third classification outcome can be produced (scenario C). Figure
2 shows the score distribution of a typical boosting function in two competing scenarios
with two significance thresholds used.

2. scenario A and scenario B : here one must describe the competing scenarios to be used at
each boosting function. Scenarios names should be present in the training dataset and be
comma-separated (as shown in Table 2).

3. significance thresholds for each scenario: values for the significance thresholds (between 0
and 1) for scenario A and scenario B. This allows to classify empirical data into the two
or three possible outcomes. When only one threshold is used (to discard neutrality, for
example), the other one must be set as FALSE.

Finally, three more parameters should be set. First, the number of boosting iterations for
the mboost algorithm, which is set at 1000 as default. And second, the number of bootstrapping
iterations (bootstrap iterations) performed by the method at each boosting function estimation
plus the sample size used (bootstrap sampling - as the fraction of the total number of replicates
per scenario) at each bootstrap iteration.

Thus, if one wants to follow the steps used in the manuscript to classify empirical data into
the 5 possible outcomes (scenarios), the following commands should be used:

> library("hierarchicalBoosting")

Load input dataset:

> input_path <- system.file("exdata/training_data.txt",

+ package="hierarchicalBoosting")

> input <- read.table(input_path, header=T, stringsAsFactors=F)

Define individual boosting parameters:

> boosting_1 <- c()

> boosting_1["input_data"] <- "original"

6

Figure 4. Distribution plot for the boosting function #4 (with two thresholds) from the example.

> boosting_1["scenario_A"] <- "recent_complete,ancient_complete"

> boosting_1["scenario_B"] <- "neutral,recent_incomplete,ancient_incomplete"

> boosting_1["threshold_scenario_A"] <- FALSE

> boosting_1["threshold_scenario_B"] <- 0.01

> boosting_2 <- c()

> boosting_2["input_data"] <- "boosting_1:scenario_B"

> boosting_2["scenario_A"] <- "neutral"

> boosting_2["scenario_B"] <- "recent_incomplete,ancient_incomplete"

> boosting_2["threshold_scenario_A"] <- 0.99

> boosting_2["threshold_scenario_B"] <- FALSE

> boosting_3 <- c()

> boosting_3["input_data"] <- "boosting_1:scenario_A"

> boosting_3["scenario_A"] <- "recent_complete"

> boosting_3["scenario_B"] <- "ancient_complete"

> boosting_3["threshold_scenario_A"] <- 0.95

> boosting_3["threshold_scenario_B"] <- 0.05

> boosting_4 <- c()

> boosting_4["input_data"] <- "boosting_2:scenario_B"

> boosting_4["scenario_A"] <- "recent_incomplete"

> boosting_4["scenario_B"] <- "ancient_incomplete"

> boosting_4["threshold_scenario_A"] <- 0.95

> boosting_4["threshold_scenario_B"] <- 0.05

7

Create configuration table:

> config_table <- data.frame(rbind(boosting_1, boosting_2, boosting_3,

+ boosting_4), stringsAsFactors=F)

Define bootstrapping parameters:

> bootstrap_iterations <- 20

> bootstrap_sampling <- 0.9

Check compatibility:

> check.HierarchicalBoosting(config_table, input)

checking scenarios names...ok

checking significance thresholds...ok

checking classification tree structure...ok

Create hierarchicalBoosting object:

> hierarchicalBoosting <- train.HierarchicalBoosting(input, config_table,

+ bootstrap_iterations, bootstrap_sampling)

Training Boosting #1

recent_complete/ancient_complete vs neutral/recent_incomplete/ancient_incomplete

input data: original dataset

number of replicates => scenario A: 199 scenario B: 300

significance thresholds => scenario A: FALSE scenario B: 0.01

boostrapping.....................done

Training Boosting #2

neutral vs recent_incomplete/ancient_incomplete

input data: scenario_B from boosting_1

number of replicates => scenario A: 100 scenario B: 200

significance thresholds => scenario A: 0.99 scenario B: FALSE

boostrapping.....................done

Training Boosting #3

recent_complete vs ancient_complete

input data: scenario_A from boosting_1

number of replicates => scenario A: 99 scenario B: 100

significance thresholds => scenario A: 0.95 scenario B: 0.05

boostrapping.....................done

Training Boosting #4

recent_incomplete vs ancient_incomplete

input data: scenario_B from boosting_2

number of replicates => scenario A: 100 scenario B: 100

significance thresholds => scenario A: 0.95 scenario B: 0.05

boostrapping.....................done

8

Create validation plots:

> plot.HierarchicalBoosting(hierarchicalBoosting, config_table, input)

Generating validation plots...

- boosting_1.plots.pdf

- boosting_2.plots.pdf

- boosting_3.plots.pdf

- boosting_4.plots.pdf

Load empirical dataset (selection tests run at SLC45A2 genomic region in CEU):

> empirical_path <- system.file("exdata/SLC45A2_CEU_sweep.txt",

+ package="hierarchicalBoosting")

> empirical <- read.table(empirical_path, header=T, stringsAsFactors=F)

Check compatibility:

> check.HierarchicalBoosting(config_table, input,

+ hierarchicalBoosting=hierarchicalBoosting)

checking scenarios names...ok

checking significance thresholds...ok

checking classification tree structure...ok

checking compatibility: input data and hierarchicalBoosting object...ok

Apply hierarchicalBoosting object to empirical dataset:

> hierarchicalBoosting_results <- apply.HierarchicalBoosting(empirical,

+ config_table, hierarchicalBoosting)

Applying hierarchicalBoosting...

1 2 3 4

Classifying data...

Summarize hierarchicalBoosting results: a signal of ’ancient incomplete’ selective sweep is de-
tected within the region where the gene is located (SLC45A2: chr5:33,944,721-33,984,780)

> classification <- summarize.HierarchicalBoosting(hierarchicalBoosting_results)

Summarizing classification...

> print(classification)

chromosome start end classification

1 5 33450000 33475000 neutral

2 5 33475000 33500000 neutral

3 5 33500000 33525000 neutral

4 5 33525000 33550000 neutral

5 5 33550000 33575000 neutral

6 5 33575000 33600000 neutral

7 5 33600000 33625000 neutral

8 5 33625000 33650000 neutral

9

9 5 33650000 33675000 neutral

10 5 33675000 33700000 neutral

11 5 33700000 33725000 neutral

12 5 33725000 33750000 neutral

13 5 33750000 33775000 neutral

14 5 33775000 33800000 neutral

15 5 33800000 33825000 neutral

16 5 33825000 33850000 neutral

17 5 33850000 33875000 neutral

18 5 33875000 33900000 neutral

19 5 33900000 33925000 ancient_incomplete

20 5 33925000 33950000 ancient_incomplete

21 5 33950000 33975000 ancient_incomplete

22 5 33975000 34000000 neutral

23 5 34000000 34025000 neutral

24 5 34025000 34050000 neutral

25 5 34050000 34075000 neutral

26 5 34075000 34100000 neutral

27 5 34100000 34125000 neutral

28 5 34125000 34150000 neutral

29 5 34150000 34175000 neutral

30 5 34175000 34200000 <NA>

31 5 34200000 34225000 <NA>

32 5 34225000 34250000 <NA>

33 5 34250000 34275000 neutral

34 5 34275000 34300000 neutral

35 5 34300000 34325000 neutral

36 5 34325000 34350000 neutral

37 5 34350000 34375000 neutral

38 5 34375000 34400000 neutral

4 References

K. Lin, H. Li, C. Schloetterer and A. Futschik (2011) Distinguishing positive selection from
neutral evolution: boosting the performance of summary statistics. Genetics 187: 229-244.

P. Buehmann and T. Hothorn (2007) Boosting algorithms: regularization, prediction, and
model fitting. Stat. Sci. 22: 477-505.

PW. Messer (2013) SLiM: Simulating Evolution with Selection and Linkage. Genetics.
194:1037

RD. Hernandez (2008) A flexible forward simulator for populations subject to selection and
demography. Bioinformatics, 24:2786-2787

G. Ewing and J. Hermisson (2010) MSMS: A coalescent simulation program including
recombination, demographic structure, and selection at a single locus. Bioinformatics
26:2064-2065.

SF. Schaffner, C. Foo, S. Gabriel, D. Reich, MJ. Daly, D. Altshuler (2005) Calibrating a co-
alescent simulation of human genome sequence variation. Genome Res. 15(11): 1576–1583.

10

The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from
1,092 human genomes. Nature 491: 56–65.

R. Nielsen, S. Williamson, Y. Kim, MJ. Hubisz, AG. Clark et al. (2005) Genomic scans
for selective sweeps using SNP data. Genome Res. 15: 1566–1575

BF. Voight, S. Kudaravallis, X. Wen, JK. Pritchard (2006) A map of recent positive selec-
tion in the human genome. PLoS Biol. 4: e72.

J.C. Fay and C.I. Wu (2000) Hitchhiking under positive Darwinian selection. Genetics
155:1405-1413.

F. Tajima(1989) Statistical method for testing the nuetral mutation hypothesis by DNA
polymorphism. Genetics 123:585-595.

YX. Fu and WH. Li (1993) Statistical tests of neutrality of mutations. Genetics 133:
693–709.

P.C. Sabeti, D.E. Reich, J.M. Higgins, H.Z.P. Levine, D.J. Richter et al.(2002) Detecting
recent positive selection in the human genome from haplotype structure. Nature 419:832-
837.

11

	Principle
	Usage
	Example
	References

